DOI: 10.1002/ejoc.201000541

Cooperative C3- and C13-Substituent Effects on Synthetic Chlorophyll Derivatives

Shin-ichi Sasaki, [a,b] Mari Yoshizato, [a] Michio Kunieda, [a] and Hitoshi Tamiaki*[a]

Keywords: Porphyrinoids / Macrocycles / Photosynthesis / UV/Vis spectroscopy

C3-vinyl and C13-keto-carbonyl groups of methyl pyropheophorbide-a, a chlorophyll-a derivative, were systematically modified to investigate the substituent effects along the y-axis of chlorin macrocycles. C13¹ deoxygenation resulted in blueshifts of the Q_y absorption maxima and a large reduction of their redox potentials, whereas introduction of the dicya-

nomethylene group at the 13^1 -position caused the opposite effect on both optical and electrochemical properties. Among the nine chlorins examined, the Q_y peak positions could be varied from 647 to 736 nm by the cooperative effects of the diagonal substituents' combinations.

Introduction

Chlorophyll(Chl)-a (Figure 1, a) possessing the C3-vinyl group is a representative dye molecule in natural photosynthesis, and its C3-formyl analogue, Chl-d, is observed in some cyanobacteria. This difference between the C3-vinyl and formyl groups causes a shift of the Q_y peak positions: 661 (Chl-a) and 686 nm (Chl-d) in ethyl ether. On the other hand, bacteriochlorophyll-d has the C3-(1-hydroxyethyl) group on its chlorin macrocycle to give a blueshifted Q_y maximum at 650 nm as its monomeric form in ethyl ether. To clarify such C3-substituent effects on optical properties, we reported a series of Chl derivatives possessing different C3-substituents.

Since alteration of the C3-functional group brings visual color changes in solution and drastic Q_y peak shifts, introduction of a molecular recognition site at the 3-position successfully led to the development of chlorophyll-based chemosensors (Figure 1, b). [6] One of the advantages in using the chlorin unit for the design of chromo/fluororeceptors is its intense Q_y band, which is located at the longer-wavelength region. Because this characteristic band is dependent on the transition moment along the y-axis, transformation of the C13-functional group would also be useful for tuning the optical properties of the red-most bands. Thus spectral characteristics of C3-functionalized chlorins are expected to be effectively controlled by the simultaneous substituent effects at the diagonal 13-position.

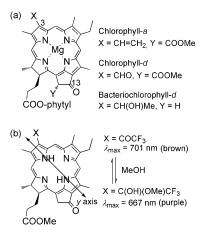


Figure 1. Chemical structures of (a) some natural (bacterio)chlorophylls and (b) an example of a chlorophyll-based chemosensor.

In this study we synthesized C3-substituted chlorins possessing a dicyanomethylene group at the 13¹-position or lacking any C13-functional group and compared their physical properties with those of the corresponding C13¹-oxochlorins. The cooperative effects of C3/C13-functional groups were elucidated based on absorption and emission spectroscopy together with cyclic voltammetry.

Results and Discussion

Synthesis of Chlorophyll Derivatives 1–9

Chl-a was extracted from *Spirulina geitleri* and converted to methyl pyropheophorbide-a (1)^[7] and its C13¹-deoxo analogue $\mathbf{4}^{[8]}$ according to the literature procedure. Oxidative cleavage of the C3-vinyl to formyl group (1 \rightarrow 2,^[7] $\mathbf{4} \rightarrow$ 5^[9]; Scheme 1) and the successive Knoevenagel reaction of the 3-formylchlorins with malononitrile (2 \rightarrow 3, 5 \rightarrow 6) were

 [[]a] Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan Fax: +81-77-561-2659
E-mail: tamiaki@se.ritsumei.ac.jp

[[]b] Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201000541.

Scheme 1. Synthesis of chlorophyll derivatives 1-9.

carried out by using previously reported procedures. [4] On the other hand, the Knoevenagel reaction was found to be applicable for the introduction of a dicyanomethylene group at the 13¹-position. When the C13-keto-carbonyl group on 1 was treated with excess malononitrile in the presence of triethylamine in refluxing THF, the corresponding C13¹-dicyanomethylene-chlorin 7 was obtained in 67% yield. The following oxidative cleavage of the C3-vinyl group of 7 and subsequent Knoevenagel reaction proceeded smoothly to afford 8 (70%) and 9 (41%) with less interference of the C13¹-dicyanomethylene group. Alternatively, one-pot reaction of the 3- and 13-positions of 2 with malononitrile afforded 9 via 3, as its counterpart 8 was not isolated even under mild conditions: its stepwise synthesis from 2 slightly improved the yield of 9 (2 \rightarrow 9: 7%, 2 \rightarrow 3 \rightarrow 9: 88 × 12% = 11%).

Optical Properties of Synthetic Chlorins 1–9

The electronic absorption and emission spectra of 3-vinyl-, 3-formyl-, and 3-(dicyanoethenyl)chlorins are shown in

Figure 2, and their absorption maxima and fluorescence data are summarized in Table 1. When the C13-carbonyl group of chlorin derivatives is reduced to the C13-deoxo moiety, the Q_{ν} peak maxima were shifted to a lower wavelength with a decrease of the relative peak absorbances $(A_{\rm rel})$. On the contrary, replacement of the C13-carbonyl with the dicyanoethenyl group caused redshifts of the Q_{ν} peak. The observed Q_{ν} peak positions are apparently related to the electron-withdrawing ability of the C13-functional group $[B = H_2 \rightarrow O \rightarrow C(CN)_2]$ in Table 1], which is similar to the C3-substituent effects previously reported.^[5] In view of the C13-substituent effect, the Q_{ν} peak shift (940 cm⁻¹) accompanied by the conversion of the C3-vinyl to dicyanoethenyl through the formyl group of C13¹-deoxochlorins $\mathbf{4} \rightarrow \mathbf{6}$ (B=H₂, $\lambda_{abs} = 647 \rightarrow 689$ nm) is larger than that of C13¹-oxo-chlorins $1 \rightarrow 3$ (B = O, λ_{abs} = 667 \rightarrow 706 nm, 830 cm⁻¹), whereas 13¹-(dicyanomethylene)chlorins $7 \rightarrow 9$ showed the least effect [B = C(CN)₂, λ_{abs} = 704 \rightarrow 736 nm, 620 cm⁻¹]. An electron-withdrawing group seems to decrease the substituent effects at the diagonal position. Similar cooperative effects were also observed from changes

Table 1. Visible absorption (λ_{abs}), fluorescence emission maxima (λ_{em}), and fluorescence quantum yields (Φ) of chlorophyll derivatives 1–9 in CH₂Cl₂.

Compound	A	В	Absorption, λ_{abs} ($A_{rel}^{[al]}$) [nm] [fwhm ^[b] [cm ⁻¹]		Fluorescence emission ^[c]		
			Q_x	Q_y	λ _{em} [nm]	$\Delta \text{ [cm}^{-1}]^{[d]}$	Φ [%]
1	CH ₂	0	509, 539	609, 667 (0.44) [473]	672	110	22
2	O	O	521, 554	632, 694 (0.81) [435]	699	100	18
3	$C(CN)_2$	O	522, 568	643, 706 (0.55) [803]	725	370	17
4	CH ₂	H_2	501	592, 647 (0.24) [407]	650	70	17
5	0	$\overline{\mathrm{H}_{2}}$	514, 551	610, 665 (0.34) [452]	667	50	14
6	$C(CN)_2$	H_2	580	636, 689 (0.34) [928]	715	530	10
7	CH ₂	$C(CN)_2$	534, 574	643, 704 (1.10) [505]	712	160	25
8	O	$C(CN)_2$	543, 584	663, 727 (1.30) [492]	733	110	21
9	$C(CN)_2$	$C(CN)_2$	545, 590	669, 736 (0.97) [802]	749	250	20

[a] Relative peak absorbance ($A_{\rm rel}$) was based on the most intense Soret peak. [b] Full width at half maximum. [c] Excited at Soret band. [d] Stokes shift (Δ /cm⁻¹) = $[1/\lambda_{\rm abs}(Q_{\nu}(0,0)) - 1/\lambda_{\rm em}] \times 10^7$.

of the C3-position; the Q_y peak shifts of **4** to **7** (A = CH₂, $\lambda_{\rm abs} = 647 \rightarrow 704$ nm, 1250 cm⁻¹) and **5** to **8** (A = O, $\lambda_{\rm abs} = 665 \rightarrow 727$ nm, 1280 cm⁻¹) are larger than that of 3-(dicyanoethenyl)chlorins **6** to **9** [A = C(CN)₂, $\lambda_{\rm abs} = 689 \rightarrow 736$ nm, 930 cm⁻¹].

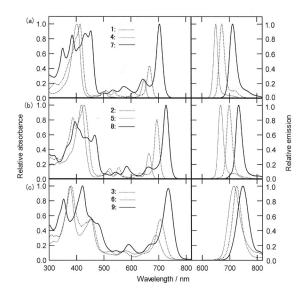


Figure 2. Electronic absorption (left) and fluorescence emission spectra (right) of (a) 3-vinylchlorins 1 (dotted line), 4 (solid thin line), and 7 (solid thick line), (b) 3-formylchlorins 2 (dotted line), 5 (solid thin line), and 8 (solid thick line), and (c) 3-(dicyanoethenyl)-chlorins 3 (dotted line), 6 (solid thin line), and 9 (solid thick line) in CH_2Cl_2 . All spectra were normalized at their most intense maxima.

It should be noted that the dicyanomethylene group causes not only the redshifts of the Q_x/Q_y maxima but also characteristic peak broadening of the Soret band, regardless

of the 3/13-positions of the group. This functional group seems to bring a large Stokes shift relative to other types of combinations of the substituents (A = CH₂, O; B=H₂, O). The fluorescence quantum yields were varied between 10 and 25%, and specific increase or quenching was not observed. Although the differences are not very large, electron-withdrawing groups at the 3-position decrease the Φ values, whereas the C13-functional groups appear to have the opposite effect.

Electrochemical Properties of Synthetic Chlorins 1-9

Redox potentials of chlorins **1–9** are summarized in Table 2.^[10] Oxidation potentials ($E_{1/2}^{ox}$) of three-type C3-substituted chlorins [A = CH₂, O, or C(CN)₂] increased in the

Table 2. Redox potentials of chlorophyll derivatives 1–9.[a]

	$A^{[b]}$	$\mathbf{B}^{[b]}$	E _{1/2} [mV]	E ^{red} _{1/2} [mV]	ΔE [mV] ^[c]	$10^{7}/\lambda_{abs}$ [cm ⁻¹] ^[d]
1	CH ₂	О	390	-1590	1980	15000
2	0	O	480	-1400	1880	14400
3	$C(CN)_2$	O	500	_[e]	_	14200
4	CH ₂	H_2	110	-1930	2040	15500
5	O	H_2	240	-1720	1960	15000
6	$C(CN)_2$	H_2	280	_[e]	_	14500
7	CH_2	$C(CN)_2$	450	-1370	1820	14200
8	O	$C(CN)_2$	540	-1260	1800	13800
9	$C(CN)_2$	$C(CN)_2$	580	_[e]	_	13600

[a] Cyclic voltammograms were recorded in CH₂Cl₂/0.1 M Bu₄N-ClO₄ with a scan rate of 10 mV/s at ca. 1 mM sample solutions. The redox potential values are reported based on the oxidation potential of ferrocene as a standard. [b] Refer to the structure in Table 1. [c] The difference between oxidation and reduction potentials: $\Delta E = E_{1/2}^{\rm ox} - E_{1/2}^{\rm tel}$. [d] The wavenumber of the $Q_y(0,0)$ peak maxima. [e] Peaks were not clearly observed.

order of $B = CH_2 \rightarrow O \rightarrow C(CN)_2$ and reduction potentials $(E_{1/2}^{red})$ showed more positive values in this sequence. A similar tendency was observed in changes of $A = CH_2 \rightarrow O \rightarrow C(CN)_2$ for $C13^1$ -substituted chlorins $[B = O, H_2, \text{ or } C-(CN)_2]$. Electron-withdrawing substituents at the 3/13-positions decrease the electron density on the chlorin macrocycle and make the release of one electron more difficult. As expected, an almost linear relationship (correlation coefficient $r^2 = 0.966$) can be seen when the potential differences of ΔE (= $E_{1/2}^{ox} - E_{1/2}^{red}$) are plotted versus the energy level of Q_y maxima $(10^7/\lambda_{abs})$ in wavenumber units (see Figure S5 in the Supporting Information).

Conclusions

We have demonstrated the transformation of methyl pyropheophorbide-a to 13^1 -(dicyanomethylene)chlorin derivatives, which caused drastic spectral changes, especially in their Q_y bands. The modified dye molecules should be useful for the development of new chromo/fluororeceptors^[6] and for application to dye-sensitized solar cells,^[11] as the C3-formyl groups of **2**, **5**, and **8** could be further altered.^[4-6,12]

Experimental Section

General Methods: Electronic absorption and fluorescence emission spectra were measured on Hitachi U-3500 and F-4500 spectrometers, respectively. Fluorescence quantum yields in CH₂Cl₂ were determined by using a Hamamatsu Photonics C9920-02 spectrometer. All melting points were measured with a Yanagimoto micro melting apparatus and were uncorrected. ¹H NMR spectra were measured with a JEOL-JNM-600HR spectrometer; chemical shifts (δ) in CDCl₃ are expressed in parts ppm relative to TMS (δ = 0.00 ppm) as an internal reference and peaks were assigned by ¹H-¹H COSY and NOESY spectra. FTIR spectra were measured with a Shimadzu IRAffinity-1 spectrophotometer. Electrochemical measurements were carried out by a BAS CV-50W voltammetric analyzer with a conventional three-electrode system. FAB-MS were measured with a JEOL GCmate II spectrometer. FAB-MS samples were dissolved in CH₂Cl₂ and m-nitrobenzyl alcohol and glycerol were used as the matrixes and PEG600 was added as an internal reference.

Methyl pyropheophorbide-a (1),^[7] methyl pyropheophorbide-d (2),^[7] methyl 3²,3²-dicyano-pyropheophorbide-a (3),^[4] methyl 13¹-deoxo-pyropheophorbide-a (4),^[8] and methyl 13¹-deoxo-pyropheophorbide-d (5)^[9] were prepared as previously reported. THF was distilled from CaH₂ before use. Other solvents and reagents were employed as purchased without further purification. All synthetic procedures were carried out in the dark.

Methyl 3²,3²-Dicyano-13¹-deoxo-pyropheophorbide-*a* (6): According to the reported procedure, [4] Knoevenagel reaction of 3-formylchlorin **5** (30 mg, 0.056 mmol) was performed by malononitrile (50 mg, 0.76 mmol) and Et₃N (24 mg, 0.24 mmol) in refluxing THF (20 mL) for 6 h. The crude product was purified by chromatography on silica gel (Et₂O/CH₂Cl₂, 1:99) followed by recrystallization from CH₂Cl₂/MeOH to give **6** (16 mg, 48%) as brown crystals; m.p. 208–209 °C. UV/Vis (CH₂Cl₂): λ_{max} (λ_{rel}) = 689 (0.34), 636 (0.10), 580 (0.13), 451 (0.56), 376 (1) nm; Flu (CH₂Cl₂: λ_{ex} =

450 nm): $\lambda_{\rm em} = 715$ nm; $\Phi_{\rm Flu}$ (CH₂Cl₂: $\lambda_{\rm ex} = 450$ nm) = 10%. IR (film): $\tilde{v} = 2228$ (C≡N), 1744 (17²-C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 9.54$ (s, 1 H, 5-H), 9.52 (s, 1 H, 3-CH), 9.40 (s, 1 H, 10-H), 8.94 (s, 1 H, 20-H), 4.93–4.88, 4.81–4.76 (m, each 1 H, 13¹-CH₂), 4.60 (dq, J = 2, 7 Hz, 1 H, 18-H), 4.46–4.43 (br-d, 1 H, 17-H), 4.09–3.99 (m, 2 H, 13-CH₂), 3.80 (q, J = 8 Hz, 2 H, 8-CH₂), 3.64, 3.60 (s, each 3 H, 2-CH₃, 17²-CO₂CH₃), 3.45 (s, 3 H, 12-CH₃), 3.41 (s, 3 H, 7-CH₃), 2.82–2.76, 2.66–2.60, 2.32–2.23 (m, 1 H, 1 H, 2 H, 17-CH₂CH₂), 1.83 (d, J = 7 Hz, 3 H, 18-CH₃), 1.75 (t, J = 8 Hz, 3 H, 8¹-CH₃), -1.08, -2.46 (s, each 1 H, NH×2) ppm. MS (FAB): calcd. for C₃₆H₃₆N₆O₂ 584.2900; found 584.2946 [M]⁺.

Methyl 13^1 -Deoxo- 13^1 -(dicyanomethylene)pyropheophorbide-a (7): A mixture of chlorin 1 (27 mg, 0.050 mmol), malononitrile (33 mg, 0.50 mmol), and Et₃N (35 mg, 0.35 mmol) in THF (20 mL) was refluxed for 1 h. The solution was cooled to room temperature, poured into 1% aqueous HCl, and extracted with CH₂Cl₂. The extract was washed with water, dried with anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by silicagel chromatography (Et₂O/CH₂Cl₂, 1:99) followed by recrystallization from CH₂Cl₂/MeOH to give 7 (20 mg, 67%) as brown crystals; m.p. 232–236 °C. UV/Vis (CH₂Cl₂): λ_{max} (A_{rel}) = 704 (1.1), 643 (0.29), 574 (0.18), 534 (0.12), 453 (1), 433 (0.96), 385 (0.93), 351 (0.75) nm; Flu (CH₂Cl₂: $\lambda_{\text{ex}} = 450 \text{ nm}$): $\lambda_{\text{em}} = 712 \text{ nm}$; Φ_{Flu} $(CH_2Cl_2: \lambda_{ex} = 450 \text{ nm}) = 25\%. \text{ IR } (CH_2Cl_2): \tilde{v} = 2220 \text{ } (C \equiv N),$ 1733 (17²-C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 9.15 (s, 1 H, 5-H), 9.00 (s, 1 H, 10-H), 8.37 (s, 1 H, 20-H), 7.89 (dd, J = 18, 12 Hz, 1 H, 3-CH), 6.26 (dd, J = 18, 1 Hz, 1 H, 3¹-CH trans to 3-C-H), 6.16 (dd, J = 12, 1 Hz, 1 H, 3¹-CH cis to 3-C-H), 5.37, 5.26 (d, J =20 Hz, each 1 H, 13^1 -CH₂), 4.33 (dq, J = 2, 7 Hz, 1 H, 18-H), 4.10– 4.07 (br-d, 1 H, 17-H), 3.65 (s, 3 H, 17^2 -CO₂CH₃), 3.53 (q, J =8 Hz, 2 H, 8-CH₂), 3.38 (s, 3 H, 12-CH₃), 3.33 (s, 3 H, 2-CH₃), 3.12 (s, 3 H, 7-CH₃), 2.58–2.52, 2.51–2.46, 2.29–2.24, 2.12–2.05 (m, each 1 H, 17-CH₂CH₂), 1.75 (d, J = 7 Hz, 3 H, 18-CH₃), 1.59 (t, $J = 8 \text{ Hz}, 3 \text{ H}, 8^1\text{-CH}_3$, 1.03, -1.03 (s, each 1 H, NH×2) ppm. MS (FAB): calcd. for C₃₇H₃₆N₆O₂ 596.2900; found 596.2898 [M]⁺.

Methyl 13¹-Deoxo-13¹-(dicyanomethylene)pyropheophorbide-d (8): According to the reported procedure,^[7] 3-vinylchlorin 7 (50 mg, 0.084 mmol) was oxidized by OsO₄ (ca. 50 mg), NaIO₄ (300 mg, 1.4 mmol), and AcOH (1 mL) in water (2 mL) and THF (20 mL). The crude product was purified by silica-gel chromatography (Et₂O/CH₂Cl₂, 1:99) followed by recrystallization from CH₂Cl₂/ MeOH to give 8 (35 mg, 70%) as green crystals; m.p. 239-242 °C. UV/Vis (CH₂Cl₂): λ_{max} (A_{rel}) = 727 (1.3), 663 (0.22), 584 (0.23), 543 (0.12), 467 (0.77), 437 (0.73), 395 (1) nm; Flu (CH₂Cl₂: λ_{ex} = 470 nm): $\lambda_{\rm em} = 733$ nm; $\Phi_{\rm Flu}$ (CH₂Cl₂: $\lambda_{\rm ex} = 470$ nm) = 21%. IR (Film): $\tilde{v} = 2222$ (C \equiv N), 1744 (17²-C \equiv O), 1668 (3-C \equiv O) cm⁻¹. ¹H NMR (CDCl₃): δ = 11.46 (s, 1 H, 3-CH), 10.17 (s, 1 H, 5-H), 9.46 (s, 1 H, 10-H), 8.69 (s, 1 H, 20-H), 5.78, 5.66 (d, J = 21 Hz, each 1 H, 13^{1} -CH₂), 4.49 (dq, J = 2, 8 Hz, 1 H, 18-H), 4.33–4.30 (br-d, 1 H, 17-H), 3.87 (s, 3 H, 12-CH₃), 3.71 (s, 3 H, 2-CH₃), 3.67 (q, J $= 8 \text{ Hz}, 2 \text{ H}, 8-\text{CH}_2$), 3.63 (s, 3 H, 17²-CO₂CH₃), 3.26 (s, 3 H, 7-CH₃), 2.70–2.64, 2.63–2.59, 2.34–2.29, 2.27–2.23 (m, each 1 H, 17- CH_2CH_2), 1.81 (d, J = 8 Hz, 3 H, 18- CH_3), 1.69 (t, J = 8 Hz, 3 H, 8¹-CH₃), 0.75, -1.34 (s, each 1 H, NH×2) ppm. MS (FAB): calcd. for C₃₆H₃₄N₆O₃ 598.2692; found 598.2732 [M]⁺.

Methyl 3^2 , 3^2 -Dicyano- 13^1 -deoxo- 13^1 -(dicyanomethylene)pyropheophorbide-a (9): Reaction of 2 (35 mg, 0.06 mmol) with malononitrile (515 mg, 7.8 mmol) in refluxing THF in the presence of Et₃N for 3.5 h gave 9 in 7% yield, whereas a similar treatment of 3 (60 mg, 0.10 mmol) with malononitrile (515 mg, 7.8 mmol) gave 9 in 12% yield. Reaction of 8 (30 mg, 0.05 mmol) with malononitrile (33 mg, 0.50 mmol) in the presence of Et₃N (35 mg, 0.35 mmol) in

THF (20 mL) at room temperature for 2 h gave **9** as green crystals in 41% yield after purification by silica-gel chromatography (CH₂Cl₂) and recrystallization (CH₂Cl₂/MeOH); m.p. 138–143 °C. UV/Vis (CH₂Cl₂): $\lambda_{\rm max}$ ($A_{\rm rel}$) = 736 (0.97), 669 (0.22), 590 (0.21), 545 (0.13), 422 (1), 353 (0.83) nm; Flu (CH₂Cl₂: $\lambda_{\rm ex}$ = 450 nm): $\lambda_{\rm em}$ = 749 nm; $\Phi_{\rm Flu}$ (CH₂Cl₂: $\lambda_{\rm ex}$ = 450 nm) = 20%. IR (CH₂Cl₂): $\tilde{\rm v}$ = 2228, 2216 (C=N), 1743 (17²-C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 9.29, 9.17, 9.05, 8.66 (s, each 1 H, 5-, 10-, 20-H, 3-CH), 5.56, 5.39 (d, J = 20 Hz, each 1 H, 13¹-CH₂), 4.48 (dq, J = 2, 8 Hz, 1 H, 18-H), 4.28–4.25 (br-d, 1 H, 17-H), 3.66 (q, J = 8 Hz, 2 H, 8-CH₂), 3.65, 3.51, 3.46, 3.25 (s, each 3 H, 2-, 7-, 12-CH₃, 17²-CO₂CH₃), 2.65–2.59, 2.35–2.29, 2.22–2.17 (m, 2 H, 1 H, 1 H, 17-CH₂CH₂), 1.84 (d, J = 8 Hz, 3 H, 18-CH₃), 1.67 (t, J = 8 Hz, 3 H, 8¹-CH₃), 0.47, -1.36 (s, each 1 H, NH×2) ppm. MS (FAB): calcd. for C₃₉H₃₅N₈O₂ 647.2883; found 647.2918 [M + H]⁺.

Supporting Information (see also the footnote on the first page of this article): ¹H NMR spectra of **6–9** in CDCl₃ (Figures S1–4) and relation of Q_y energy levels with redox potential differences (Figure S5).

Acknowledgments

This work was partially supported by Grants-in-Aid for Scientific Research by the Japan Society for the Promotion of Science (JSPS) (No. 22245030) and by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) (Young Scientists Program, No. 21750154).

- b) H. Tamiaki, R. Shibata, T. Mizoguchi, *Photochem. Photobiol.* **2007**, *83*, 152–162.
- [2] T. Mizoguchi, A. Shoji, M. Kunieda, H. Miyashita, T. Tsuchiya, M. Mimuro, H. Tamiaki, *Photochem. Photobiol. Sci.* 2006, 5, 291–299.
- [3] T. Mizoguchi, Y. Saga, H. Tamiaki, Photochem. Photobiol. Sci. 2002, 1, 780–787.
- [4] H. Tamiaki, M. Kouraba, Tetrahedron 1997, 53, 10677-10688.
- [5] S. Sasaki, H. Tamiaki, J. Org. Chem. 2006, 71, 2648–2654.
- [6] a) S. Sasaki, Y. Kotegawa, H. Tamiaki, *Tetrahedron Lett.* 2006, 47, 4849–4852; b) S. Sasaki, Y. Kotegawa, H. Tamiaki, *Bull. Chem. Soc. Jpn.* 2009, 82, 267–271; c) S. Sasaki, Y. Kotegawa, K. Azuma, M. Kunieda, H. Tamiaki, *Chem. Lett.* 2009, 38, 796–797.
- [7] H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, K. Schaffner, *Photochem. Photobiol.* 1996, 63, 92–99.
- [8] M. Katterle, A. R. Holzwarth, A. Jesorka, Eur. J. Org. Chem. 2006, 2, 414–422.
- [9] G. P. Wiederrecht, W. A. Svec, M. P. Niemczyk, M. R. Wasielewski, J. Phys. Chem. 1995, 99, 8918–8926.
- [10] A recent example of CV data of chlorophyll derivatives: C. Liu, M. P. Dobhal, M. Ethirajan, J. R. Missert, R. K. Pandey, S. Balasubramanian, D. K. Sukumaran, M. Zhang, K. M. Kadish, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2008, 130, 14311–14323.
- [11] a) X.-F. Wang, Y. Koyama, H. Nagae, Y. Wada, S. Sasaki, H. Tamiaki, J. Phys. Chem. C 2008, 112, 4418–4426; b) X.-F. Wang, O. Kitao, H. Zhou, H. Tamiaki, S. Sasaki, Chem. Commun. 2009, 1523–1525; c) X.-F. Wang, O. Kitao, H. Zhou, H. Tamiaki, S. Sasaki, J. Phys. Chem. C 2009, 113, 7954–7961; d) X.-F. Wang, H. Tamiaki, Energy Environ. Sci. 2010, 3, 94–106; e) X.-F. Wang, H. Tamiaki, L. Wang, N. Tamai, O. Kitao, H. Zhou, S. Sasaki, Langmuir 2010, 26, 6320–6327.
- [12] P. H. Hynninen, in: Chlorophylls (Ed.: H. Scheer), CRC Press, Boca Raton FL, 1991, pp. 145–209.

Received: April 19, 2010 Published Online: August 3, 2010

^[1] a) H. Scheer, in: *Light-Harvesting Antennas in Photosynthesis* (Eds.: B. R. Green, W. W. Parson), Kluwer Academic Publishers, Dordrecht, The Netherlands, **2003**, chapter 2, pp. 29–81;